1,587 research outputs found

    Aerothermal modeling program

    Get PDF
    Some significant features of the approach adopted for the combustor aerothermal modeling program are described. The individual computerized models utilized in the aero design approach are characterized. The preliminary design module provides the overall envelope definition of the burner. The diffuser module provides the detailed contours of the diffuser and combustor cowl region, as well as the pressure loss characteristics into each of the individual flow passages into the dome and around the combustor. The flow distribution module provides the air entry quantities through each of the aperatures and the overall pressure drop. The heat transfer module provides detailed metal temperature distribution throughout the metal structure as input to stress and life analysis that are not part of the aerothermo design effort. Finally, the internal flow module, INTFLOW, is described and the approach for model evaluation using laboratory data is discussed

    Spectrophotometry with a transmission grating for detecting faint occultations

    Full text link
    High-precision spectrophotometry is highly desirable in detecting and characterizing close-in extrasolar planets to learn about their makeup and temperature. For such a goal, a modest-size telescope with a simple low-resolution spectroscopic instrument is potentially as good or better than a complex general purpose spectrograph since calibration and removal of systematic errors is expected to dominate. We use a transmission grating placed in front of an imaging CCD camera on Steward Observatory's Kuiper 1.5 m telescope to provide a high signal-to-noise, low dispersion visible spectrum of the star HD 209458. We attempt to detect the reflected light signal from the extra-solar planet HD 209458b by differencing the signal just before and after secondary occultation. We present a simple data reduction method and explore the limits of ground based low-dispersion spectrophotometry with a diffraction grating. Reflected light detection levels of 0.1% are achievable for 5000-7000A, too coarse for useful limits on ESPs but potentially useful for determining spectra of short-period binary systems with large (Delta m_vis=6) brightness ratios. Limits on the precison are set by variations in atmospheric seeing in the low-resolution spectrum. Calibration of this effect can be carried out by measurement of atmospheric parameters from the observations themselves, which may allow the precision to be limited by the noise due to photon statistics and atmospheric scintillation effects.Comment: 34 pages and 17 figures. Accepted for publication in PAS

    Feasibility of transit photometry of nearby debris discs

    Get PDF
    Dust in debris discs is constantly replenished by collisions between larger objects. In this paper, we investigate a method to detect these collisions. We generate models based on recent results on the Fomalhaut debris disc, where we simulate a background star transiting behind the disc, due to the proper motion of Fomalhaut. By simulating the expanding dust clouds caused by the collisions in the debris disc, we investigate whether it is possible to observe changes in the brightness of the background star. We conclude that in the case of the Fomalhaut debris disc, changes in the optical depth can be observed, with values of the optical depth ranging from 100.510^{-0.5} for the densest dust clouds to 10810^{-8} for the most diffuse clouds with respect to the background optical depth of 1.2×103\sim1.2\times10^{-3}.Comment: 19 pages, 15 figures, accepted for publication in MNRA

    Optimized Principal Component Analysis on Coronagraphic Images of the Fomalhaut System

    Get PDF
    We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing ADI and LOCI for increasing the contrast achievable next to a bright star. The stellar PSF is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modelled. Using more principal components may decrease the number of speckles in the final image, but also increases the background noise. We apply PCA to Fomalhaut VLT NaCo images acquired at 4.05 micron with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M_Jup from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 magnitude. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.Comment: Accepted for publication in ApJ, 7 pages, 9 figure

    All NIRspec needs is HST/WFC3 pre-imaging? The use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations

    Get PDF
    The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESA's NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific 0.002"-wide micro shutter doors. To ensure proper target acquisition, the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a Target Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and z8z\sim8 candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TA's are mlim>24.5m_{lim}>24.5 AB in WFC3 F125W, (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at 23\sim23 AB mag in WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of 24\sim24 AB mag in WFC3 F125W is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified z8z\sim8 candidate galaxy and require a Galactic star within 20" of it. In this case, a depth of 25.5 AB in F125W is required (with \sim97% confidence).Comment: 17 pages, 15 figures, to appear in the Journal of Astronomical Instrumentatio

    Aerothermal modeling, phase 1. Volume 2: Experimental data

    Get PDF
    The experimental test effort is discussed. The test data are presented. The compilation is divided into sets representing each of the 18 experimental configurations tested. A detailed description of each configuration, and plots of the temperature difference ratio parameter or pattern factor parameter calculated from the test data are also provided

    Aerothermal modeling. Executive summary

    Get PDF
    One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components

    An Orthodox Social Gospel in Late-Imperial Russia

    Get PDF
    On Sunday morning, 9 January 1905, 150,000 workers and their families marched from various parts of St. Petersburg and converged upon the Winter Palace to present a “Most Loyal and Humble Address” to tsar Nicholas II asking him to improve the conditions of the workers. The marchers sang hymns and carried icons and crosses, and were led by a Russian Orthodox priest, Father Georgii Gapon, resembling a religious procession more than a labor demonstration. The workers, led by Gapon, believed in the benevolence of the Tsar, the batiushka (“little father”), and that he would listen to their troubles and help them. The day before, however, the government had ordered the march be cancelled and posted 12,000 troops in the city to prevent the marchers from reaching the palace, while Nicholas II had left Petersburg to spend the weekend at the suburban palace in Tsarskoe Selo. As the first group of marchers converged upon the Narva Gates, troops opened fire upon the unarmed crowd, killing forty and wounding hundreds. In other parts of the city soldiers also attacked the marchers, culminating in the attack on a large crowd that approached the Winter Palace in the afternoon. In all, some 150 people, including women and children, were killed. That infamous day, known as Bloody Sunday, destroyed the popular myth of the benevolent tsar and initiated two years of chaos, strikes, and violence known as the Revolution of 1905, which nearly brought the regime to its knees and forced it grudgingly to make significant concessions, above all the move toward establishing a constitutional monarchy with the October Manifesto and the Duma

    Characterising exo-ringsystems around fast-rotating stars using the Rossiter-McLaughlin effect

    Get PDF
    Planetary rings produce a distinct shape distortion in transit lightcurves. However, to accurately model such lightcurves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky projected angle of the ring system. For slow rotating stars, this mainly impacts the amplitude of the induced velocity shift, however, for fast rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modeling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW\delta W) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ\gamma) relative to the stellar rotation velocity (vv sinii, i.e. δW/Rv\delta W / R_* \gtrsim vsinii/γ\gamma). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.Comment: Accepted for publication in MNRA
    corecore